Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Res Sq ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746315

RESUMO

Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes ( PER1 , BMAL1 and REV-ERBα ) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1 , BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.

2.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657165

RESUMO

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Assuntos
Nanopartículas , Solanum lycopersicum , Enxofre , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Enxofre/metabolismo , Enxofre/química , Nanopartículas/química , Nanopartículas/metabolismo , Fotossíntese , Propriedades de Superfície , Fatores de Tempo , Fertilizantes , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/química , Folhas de Planta/metabolismo
3.
Mol Cancer Ther ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38670552

RESUMO

Delta-like ligand 3 (DLL3) is expressed in more than 70% of small cell lung cancers (SCLCs) and other neuroendocrine-derived tumor types. SCLC is highly aggressive and limited therapeutic options lead to poor prognosis for patients. HPN328 is a tri-specific T cell activating construct (TriTAC) consisting of three binding domains: a CD3 binder for T cell engagement, an albumin binder for half-life extension, and a DLL3 binder for tumor cell engagement. In vitro assays, rodent models and non-human primates were used to assess the activity of HPN328. HPN328 induces potent dose-dependent killing of DLL3-expressing SCLC cell lines in vitro concomitant with T cell activation and cytokine release. In an NCI-H82 xenograft model with established tumors, HPN328 treatment led to T cell recruitment and anti-tumor activity. In an immunocompetent mouse model expressing a human CD3ε epitope, mice previously treated with HPN328 withstood tumor rechallenge, demonstrating long-term anti-tumor immunity. When repeat doses were administered to cynomolgus monkeys, HPN328 was well tolerated up to 10 mg/kg. Pharmacodynamic changes, such as transient cytokine elevation, were observed, consistent with the expected mechanism of action of T cell engagers. HPN328 exhibited linear pharmacokinetic in the given dose range with a serum half-life of 78 to 187 hours, supporting weekly or less frequent administration of HPN328 in humans. Preclinical and nonclinical characterization suggests that HPN328 is a highly efficacious, safe, and novel therapeutic candidate. A phase 1/2 clinical trial is currently underway testing safety and efficacy in patients with DLL3 expressing malignancies.

4.
Ecol Evol ; 14(1): e10844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38230370

RESUMO

While the impact of introduced predators is a widely acknowledged issue and key component of conservation considerations for endemic waterbird populations in the Hawaiian Islands, the impact of native predators on endemic, endangered waterbirds is not as frequently discussed or factored into recovery models. The Pueo (Hawaiian Short-eared Owl; Asio flammeus sandwichensis) is a subspecies of Short-eared Owl endemic to the Hawaiian Islands and is State-listed as Endangered on the island of O'ahu. The Ae'o (Hawaiian Stilt; Himantopus mexicanus knudensi) is a subspecies of the Black-necked Stilt endemic to Hawai'i and is federally listed as Endangered throughout its range. A variety of non-native predators are confirmed to consume Ae'o eggs, chicks, and adults, including invasive mammals (e.g., feral cats), birds (e.g., Barn Owls), and amphibians (e.g., bullfrogs). While predation by native predators was suspected, there are no cases documented in the literature to date describing Pueo preying upon Ae'o. Here, we describe four events that provide evidence of Pueo predating Ae'o during the 2019-2021 breeding seasons in a wetland area on the island of O'ahu: (1) confirmed Pueo predating an Ae'o chick, (2) a suspected predation attempt of a Pueo chasing adult Ae'o, and (3) two suspected predation events based on (a) 10 adult-sized Ae'o carcasses and remains found near an active Pueo nest and (b) game camera photos of Pueo visiting two Ae'o nests. To our knowledge, these novel observations are the first published accounts of predator-prey interactions between these two subspecies.

5.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043800

RESUMO

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Assuntos
Imunidade Inata , Fator Regulador 7 de Interferon , Interferon Tipo I , Proteínas Serina-Treonina Quinases , Infecções por Vírus de RNA , Vírus de RNA , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Fibroblastos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Vírus de RNA/imunologia , Infecções por Vírus de RNA/imunologia , Humanos , Células HEK293
7.
Am J Psychiatry ; 180(10): 723-738, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777856

RESUMO

OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.


Assuntos
Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Humanos , Tentativa de Suicídio , Transtorno Depressivo Maior/genética , Fatores de Risco , Ideação Suicida , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética , Loci Gênicos/genética
8.
Sci Total Environ ; 905: 167799, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37838047

RESUMO

Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.


Assuntos
Citrullus , Fusarium , Solanum lycopersicum , Biofortificação , Doenças das Plantas/prevenção & controle
9.
Dis Model Mech ; 16(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589075

RESUMO

Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.


Assuntos
Polaridade Celular , Endopeptidases , Proteínas de Membrana , Animais , Cães , Feminino , Humanos , Camundongos , Células HEK293 , Ubiquitina , Ubiquitinação , Células Madin Darby de Rim Canino , Células MDA-MB-231 , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo
10.
ACS Nano ; 17(16): 15821-15835, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37553292

RESUMO

In the current study, foliar spray with lanthanum (La) based nanomaterials (La10Si6O27 nanorods, La10Si6O27 nanoparticle, La(OH)3 nanorods, and La2O3 nanoparticle) suppressed the occurrence of sheath blight (Rhizoctonia solani) in rice. The beneficial effects were morphology-, composition-, and concentration-dependent. Foliar application of La10Si6O27 nanorods (100 mg/L) yielded the greatest disease suppression, significantly decreasing the disease severity by 62.4% compared with infected controls; this level of control was 2.7-fold greater than the commercially available pesticide (Thifluzamide). The order of efficacy was as follows: La10Si6O27 nanorods > La10Si6O27 nanoparticle > La(OH)3 nanorods > La2O3 nanoparticle. Mechanistically, (1) La10Si6O27 nanorods had greater bioavailability, slower dissolution, and simultaneous Si nutrient benefits; (2) transcriptomic and metabolomic analyses revealed that La10Si6O27 nanorods simultaneously strengthened rice systemic acquired resistance, physical barrier formation, and antioxidative systems. Additionally, La10Si6O27 nanorods improved rice yield by 35.4% and promoted the nutritional quality of the seeds as compared with the Thifluzamide treatment. A two-year La10Si6O27 nanorod exposure had no effect on soil health based on the evaluated chemical, physical, and biological soil properties. These findings demonstrate that La based nanomaterials can serve as an effective and sustainable strategy to safeguard crops and highlight the importance of nanomaterial composition and morphology in terms of optimizing benefit.


Assuntos
Nanoestruturas , Oryza , Solo , Lantânio/farmacologia , Oryza/química , Silicatos , Doenças das Plantas/prevenção & controle
11.
Pestic Biochem Physiol ; 194: 105486, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532316

RESUMO

In this study, zinc and copper oxide nanoparticles (NPs) were synthesized using hemp (Cannabis sativa L.) leaves (ZnONP-HL and CuONP-HL), and their antifungal potential was assessed against Fusarium virguliforme in soybean (Glycine max L.). Hemp was selected because it is known to contain large quantities of secondary metabolites that can potentially enhance the reactivity of NPs through surface property modification. Synthesizing NPs with biologically derived materials allows to avoid the use of harsh and expensive synthetic reducing and capping agents. The ZnONP-HL and CuONP-HL showed average grain/crystallite size of 13.51 nm and 7.36 nm, respectively. The biologically synthesized NPs compared well with their chemically synthesized counterparts (ZnONP chem, and CuONP chem; 18.75 nm and 10.05 nm, respectively), confirming the stabilizing role of hemp-derived biomolecules. Analysis of the hemp leaf extract and functional groups that were associated with ZnONP-HL and CuONP-HL confirmed the presence of terpenes, flavonoids, and phenolic compounds. Biosynthesized NPs were applied on soybeans as bio-nano-fungicides against F. virguliforme via foliar treatments. ZnONP-HL and CuONP-HL at 200 µg/mL significantly (p < 0.05) increased (∼ 50%) soybean growth, compared to diseased controls. The NPs improved the nutrient (e.g., K, Ca, P) content and enhanced photosynthetic indicators of the plants by 100-200%. A 300% increase in the expression of soybean pathogenesis related GmPR genes encoding antifungal and defense proteins confirmed that the biosynthesized NPs enhanced disease resistance against the fungal phytopathogen. The findings from this study provide novel evidence of systemic suppression of fungal disease by nanobiopesticides, via promoting plant defense mechanisms.


Assuntos
Cannabis , Zinco , Nanopartículas Metálicas , Cannabis/metabolismo , Glycine max , Antifúngicos/metabolismo , Folhas de Planta/metabolismo
12.
Front Genet ; 14: 1215472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434949

RESUMO

Introduction: The neonate exposed to opioids in utero faces a constellation of withdrawal symptoms postpartum commonly called neonatal opioid withdrawal syndrome (NOWS). The incidence of NOWS has increased in recent years due to the opioid epidemic. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. Epigenetic variations in microRNAs (miRNAs) and their impact on addiction-related processes is a rapidly evolving area of research. Methods: The Illumina Infinium Methylation EPIC BeadChip was used to analyze DNA methylation levels of miRNA-encoding genes in 96 human placental tissues to identify miRNA gene methylation profiles as-sociated with NOWS: 32 from mothers whose prenatally opioid-exposed infants required pharmacologic management for NOWS, 32 from mothers whose prenatally opioid-exposed infants did not require treat-ment for NOWS, and 32 unexposed controls. Results: The study identified 46 significantly differentially methylated (FDR p-value ≤ 0.05) CpGs associated with 47 unique miRNAs, with a receiver operating characteristic (ROC) area under the curve (AUC) ≥0.75 including 28 hypomethylated and 18 hypermethylated CpGs as potentially associated with NOWS. These dysregulated microRNA methylation patterns may be a contributing factor to NOWS pathogenesis. Conclusion: This is the first study to analyze miRNA methylation profiles in NOWS infants and illustrates the unique role miRNAs might have in diagnosing and treating the disease. Furthermore, these data may provide a step toward feasible precision medicine for NOWS babies as well.

13.
ACS Nano ; 17(14): 13672-13684, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440420

RESUMO

The use of nanotechnology to suppress crop diseases has attracted significant attention in agriculture. The present study investigated the antifungal mechanism by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) suppressed Fusarium-induced wilt disease in lettuce (Lactuca sativa). AVGE Se NPs were synthesized by utilizing sodium selenite as a Se source and AVGE as a biocompatible capping and reducing agent. Over 21 d, 2.75% of total AVGE Se NPs was dissolved into Se ions, which was more than 8-fold greater than that of bare Se NPs (0.34%). Upon exposure to soil applied AVGE Se NPs at 50 mg/kg, fresh shoot biomass was significantly increased by 61.6 and 27.8% over the infected control and bare Se NPs, respectively. As compared to the infected control, the shoot levels of citrate, isocitrate, succinate, malate, and 2-oxo-glutarate were significantly upregulated by 0.5-3-fold as affected by both Se NPs. In addition, AVGE Se NPs significantly increased the shoot level of khelmarin D, a type of coumarin, by 4.40- and 0.71-fold over infected controls and bare Se NPs, respectively. Additionally, AVGE Se NPs showed greater upregulation of jasmonic acid and downregulation of abscisic acid content relative to bare Se NPs in diseased shoots. Moreover, the diversity of bacterial endophytes was significantly increased by AVGE Se NPs, with the values of Shannon index 40.2 and 9.16% greater over the infected control and bare Se NPs. Collectively, these findings highlight the significant potential of AVGE Se NPs as an effective and biocompatible strategy for nanoenabled sustainable crop protection.


Assuntos
Aloe , Nanopartículas , Selênio , Selênio/farmacologia , Lactuca/metabolismo , Aloe/metabolismo , Endófitos/metabolismo , Resistência à Doença
14.
Vet Parasitol ; 319: 109955, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201354

RESUMO

Refugia-based strategies associated with a combination of anthelmintic drugs belonging to different drug classes are becoming more common management practices to mitigate anthelmintic resistance (AR) in gastrointestinal nematodes (GIN) in small ruminants. Though refugia-based strategies have been largely demonstrated in small ruminants, cattle veterinarians and producers are considering such management strategies in grazing cattle production systems. Implementing refugia-based strategies lowers the amount of anthelmintics used in the herd and therefore slows the progression of AR by allowing a proportion of worms to escape drug selection pressure. The objective of this study was to observe the effect of a refugia-based strategy on body weight (BW), average daily gain (ADG) and fecal egg counts (FEC) of trichostongyle-type nematodes in naturally infected beef calves over a 131-day grazing season when compared with a whole herd treatment strategy, using the same combination of drugs. Stocker calves (n = 160) were ranked by body weight within sex then allocated to 16 paddocks, which were randomly assigned to one of two treatment groups. All calves in Group 1 (n = 80) were administered treatment, while in Group 2 (n = 80) the steer with the highest FEC in eggs per gram (EPG) within the paddock was left untreated. Treated calves received an extended release injectable 5 % eprinomectin (LongRange®, Boehringer Ingelheim Animal Health USA Inc.; 1 mL/50 kg of BW) and a 22.5 % oxfendazole oral suspension (Synanthic®, Boehringer Ingelheim Animal Health USA Inc.; 1 mL/50 kg of BW). Fecal egg counts and BW were recorded on days (D) -35, 0, 21, 131, and 148 to calculate the average fecal egg count reduction (FECR) and ADG for both groups. Linear mixed models, with paddock as the experimental unit, were used for analyses. The EPG differed on D21 (p < 0.01) and D131 (p = 0.057) with Group 2 having a higher average FEC (15.2 EPG D21; 57 EPG D131) compared with Group 1 (0.4 EPG D21; 37.25 EPG D131). However, there was no significant difference in average BW or ADG between treatment groups throughout the study. Results suggest refugia-based strategies could be implemented without significant negative impacts on average BW and ADG across other calves in the herd.


Assuntos
Anti-Helmínticos , Doenças dos Bovinos , Nematoides , Infecções por Nematoides , Animais , Bovinos , Refúgio de Vida Selvagem , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/prevenção & controle , Infecções por Nematoides/veterinária , Óvulo , Anti-Helmínticos/farmacologia , Aumento de Peso , Peso Corporal , Fezes , Ruminantes , Contagem de Ovos de Parasitas/veterinária , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/prevenção & controle
15.
Eur Neuropsychopharmacol ; 74: 1-14, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126998

RESUMO

Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.


Assuntos
Transtorno Bipolar , Relógios Circadianos , Camundongos , Animais , Lítio/farmacologia , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Relógios Circadianos/genética , Sobrevivência Celular , Ritmo Circadiano , Fibroblastos , Caspases/farmacologia , Caspases/uso terapêutico
16.
ACS Nano ; 17(5): 4871-4885, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36871293

RESUMO

Crop disease represents a serious and increasing threat to global food security. Lanthanum oxide nanomaterials (La2O3 NMs) with different sizes (10 and 20 nm) and surface modifications (citrate, polyvinylpyrrolidone [PVP], and poly(ethylene glycol)) were investigated for their control of the fungal pathogen Fusarium oxysporum (Schl.) f. sp cucumerinum Owen on six-week-old cucumber (Cucumis sativus) in soil. Seed treatment and foliar application of the La2O3 NMs at 20-200 mg/kg (mg/L) significantly suppressed cucumber wilt (decreased by 12.50-52.11%), although the disease control efficacy was concentration-, size-, and surface modification-dependent. The best pathogen control was achieved by foliar application of 200 mg/L PVP-coated La2O3 NMs (10 nm); disease severity was decreased by 67.6%, and fresh shoot biomass was increased by 49.9% as compared with pathogen-infected control. Importantly, disease control efficacy was 1.97- and 3.61-fold greater than that of La2O3 bulk particles and a commercial fungicide (Hymexazol), respectively. Additionally, La2O3 NMs application enhanced cucumber yield by 350-461%, increased fruit total amino acids by 295-344%, and improved fruit vitamin content by 65-169% as compared with infected controls. Transcriptomic and metabolomic analyses revealed that La2O3 NMs: (1) interacted with calmodulin, subsequently activating salicylic acid-dependent systemic acquired resistance; (2) increased the activity and expression of antioxidant and related genes, thereby alleviating pathogen-induced oxidative stress; and (3) directly inhibited in vivo pathogen growth. The findings highlight the significant potential of La2O3 NMs for suppressing plant disease in sustainable agriculture.


Assuntos
Cucumis sativus , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , Resistência à Doença , Óxidos , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
17.
Mol Psychiatry ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991131

RESUMO

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.

18.
PLoS One ; 18(1): e0280799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693086

RESUMO

Professional coaches commonly rely on performance analysis and metrics to help make decisions regarding their practices, selection and tactics. However, few studies to date have explored coaches' perspectives of performance analysts successful integration into the high-performance environment. The aim of this study was to investigate coaches' philosophies surrounding performance analysis and how they perceived analysts could support and implement these approaches into coaching practices and match preparation. Semi-structured interviews were conducted with five professional elite level Rugby Union coaches to investigate their perceptions of performance analysis, and the contribution of performance analysts to the high-performance environment. Results revealed three main dimensions, including the role, purpose, and desired attributes of a performance analyst. Firstly, the role of the analyst was described in terms of being an information specialist, who collects, filters, and delivers information to stakeholders, and a generalist, who helps coaches utilise technology. Secondly, the purpose of the analyst was described in terms of providing both accountability and support for coaches and players. Finally, the attributes needed of an analyst included the ability to form a close relationship with coaches, communicate complex information in meaningful ways, and who was proactive, innovative, and creative when tasked with delivering information. The findings highlighted the crucial roles, purposes, and attributes of a performance analyst within high-performance Rugby Union identified by coaches and the importance of the coach-analyst relationship to support these dimensions.


Assuntos
Tutoria , Rugby , Percepção
19.
Biol Psychiatry Glob Open Sci ; 2(4): 368-378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36324647

RESUMO

Background: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche. Methods: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (<13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h 2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...